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Abstrart. In this paper, we propose the existence of a new class of particles that we call 
H poles. Tidal forces that govern the behaviour of nearby H poles in gravitational fields is 
given by the dual of the Riemann tensor. Consequently, the equivalence principle is not 
satisfied by these H poles. A physical property of-conformal transformation is shown to 
exist, by means of which the H poles are mapped into particles of geodesic motion. 
Einstein’s equations for the gravitational field in a vacuum are shown to have a larger 
symmetry group. 

Ihe equations of the empty space gravitational field in Einstein’s theory of general 
relativity can be shown to be equivalent to the vanishing of the divergence of Weyl’s 
tensor, under suitable initial conditions (Lichnerowin 1960). 

By using such a formulation, one can investigate some additional symmetries of 
blem’s theory by looking for properties of the electric (gas) and the magnetic (%&> 
parts of the Weyl tensor. One then realizes that the equations are invariant under a 
kger group in which the transformation is an interesting 
@alar case. This symmetry is, however, broken when source terms are present in 
kequations. One is then tempted to restore the symmetry by conveniently modifying 
f6eqGatiansfor the gravitational field. Such modification must be accompanied by the 
mkduction of a class of particles which have a new type of behaviour under the 
*W@ Of gravitational forces. We will show that such particles are non-minimally 

with gravitation. The existence of this class should also be expected by 
the analogous situation in Maxwell’s electrodynamic equations, as we will 

late!. 
we will divide our present programme of research and analysis of the above web‘ into two parts. In this paper, we will study the behaviour of the new particles m a  gravitational field. Then, in a subsequent paper, we will give the necessary 

w e a t i o n  Of Einstein’s equations of the gravitational field. 
ne main fact that guided Einstein, using the equivalence principle, to assume the 

geodesicmO~On for particles under the unique influence of gravitational forces was the 
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well known relationship between inertial and gravitational mass. A 
thus minimally coupled with gravitation, will be called an E pole?. This represen& a 

straightforward generalization of Newton's theory and it is indeed easy to prove htw 
a n  go from a model of Einstein to a Newtonian model by a well defined ljmihng 
procedure. 

expected to 
lead US to new qualitative properties of particles in their interaction with gravitation, 
which do not have a counterpart in Newtonian theory. 

To develop this idea in a specific way, we look for the properties of motion of 
particles in which the curvature of the space-time can be directly show. In Q 

geodesic equation of motion, the presence of the gravitational force is given by Q 

metrid connection which is coordinate dependent (locally, it can be made to vanish) 
and, in this sense, cannot be considered as truly observable. This is no longer h e  for 
the evolution of the vector vu that connects, in a congruence of geodesics, two p o ~ ~ o f  
neighbouring curves with the same value of the affine parameter. The 
vector vu satisfies the Jacobi equation 

However, a deeper analysis of motion in a gravitational field may 

D2qa/DS2 = Rif=V'V,qB 

in which V p  = dXp/dS is the tangent vector to the geodesics Xp(s ) .  S is an aifine 
parameter and R;f= is the curvature tensor$, so we can characterize E poles as time 
particles that move, under the influence of gravitational forces, on curves such that their 
connecting vector satisfies the Jacobi equation (1.1). This way of describing the 
behaviour of particles in a given gravitational field itself suggests that we must look for 
the generalization of the Jacobi equation in order to introduce a new feature OE the 
motion of particles in curved space. The symmetric properties of the Riemann tensor 
give a unique way of constructing such an equation. Indeed, let y"(s) be a congruem 
of curves on the space-time Riemannian manifold such that their connectingvector ff 
satisfies the equation 

(1.2) 

in which R;Zp is the dual of the curvature tensor defined as 

where 

and EnSpuis the totally anti-symmetric Levi-Civita symbol. f is a constant charade* 
Of each particle. We will call an H pole any particle that moves on curves f(S)such* 
their connecting vector of the congruence, IT", satisfies equation (1.2). 

The reason for not having a term analogous to the constant f in equation ('.') 
reflects the constancy of the ratio of inertial to gravitational mass-and is indeed 
main reason for geometrizing gravitational interaction. m e  new particles do notfoiiow 
geodesic lines but, as we will see, curves of forced motion. In other words, HPles are 
not minimally coupled with gravitation. 

* -1 w R a n ~ u  - 2 7 ) " s  W B v  

QBW = GgE a p w  

-conmu* ?The origin for this terminology will be made clear later on. * In Om notation, for an arbitrary vector tU we define the curvature by means of the non 
PrOPe@' of a covariant derivative (here represented by a double bar 11): 

tak311i- ta\A\\O= RaeeAt' 
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In $2 we review Einstein's equation for the gravitational field in terms of electric 
eticpm of the Weyl tensor; 0 3 deals with the equation of motion of H poles, daw & 9 4 g i V ~  the conformal behaviour of our theory and shows the interconnection 

betweeo trajectories of E poles and H poles. In conclusion, in 8 5 ,  an analogy with 
~ p h c s  is sketched out. 

~,pleetric and magnetic parts of the Weyl tensor 

Besymtnetry properties of the Weyl tensor Cu~pvenable us to decompose it in terms of 
mwetric, trace-free tensors and Xas by simple projections of Cas,, and its 
aonan arbitrary curve za(s) which is specified by its tangent vector S'. We write 

(2.1) c:; = 2 S [ , 8 ~ S V 1 +  a;:%;;- q a 8 A ~ A % = [ p s v I -  q'evws P x qla s 81 

beaned the electric part of the Weyl tensor and 

Xa@ = C - , S ~ S V  (2.3) 
ihmagnetic part. 

Usingthese two tensors it is possible to write (Jordan et ul 1960) a set of equations 
&a! are equivalent to Einstein's equations under suitable initial data (Lichnerowicz 
1960). This set has the same structural composition as Maxwell's equation for 
dxtmdynamics. We write them for the case in which the energy-momentum tensor 
&represents a perfect fluid of density p and pressure p :  

( 2 . 4 ~ )  

(2.4b) 
%$he, h L- 3 ga,w - %:O&q 2'" = (p  + p)Oe 

%g he, h + 3 Xupa + %:O,@sAq :@ = $piu hz 
~~~h:+S~'pl lvhEql) ,SA + Oru -$@:e')v - $ ~ : o u ) V  

-.,,wd 117 da8 s ~ ~ ~ ~ ~ ~ 8 ~ ~ - s " 8 p ' " ~ ~ ~ ~ ~ A  = 0 ( 2 . 5 ~ )  
~h~h;-$~pll'hEq;~a~A + Ogee -fz$y)V -1 (E o ) y  

I%, 0 

- -7)wpiqeAuBs P s A 8 La e Bv +Suxp(uqe) AuS sA = - $ ( p ~ p ) ~ ~ , ,  

'kequations, hpy is the projector on the plane orthogonal to S", that is 

p'toVer %.s(%ua) indicates the covariant derivative projected in the direction of 

(2.5b) 

= g,, - SJ,. (2.6) 

bat is 

= %a@llAsA. 

lbeshear (up,) and the rotation (oWV) tensors and the expansion (0) are given by 

e = stU ( 2 . 7 ~ )  

(2.7b) up" = f h t,h z )  SA 11. - 7 Oh,, 

%Y =$h~,h~]SA1le. ( 2 . 7 ~ )  

1 
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a;. is the trace-free part of the tensor of shear Opu: 
1 

(24 gpy = e,, -3;ehp,.. 
muations (2.44b) give the divergence of %‘=B and 2 % ~  ; equations (2.54b) give a 
relation between the curl of gap and %& with the the-dependent 2‘ a d  C& 
respectively in a form analogous to Maxwell’s theory. 

k t  us perform an internal transformation in the above set (2.4) a d  (2.5) that 
interchanges the role of gap and Zap We set 

(2.96) XaB + ZLB = -sin +gaols +cos r$Zap 

where + represents an arbitrary constant angle. As a consequence of 
Weyl tensor changes accordingly: 

map, 

C a p p u +  C a p p u = c o s  WaBpv+sin + C p p u -  (2.10) 
The remarkable fact which we would like to point out here is that in the absene of 
matter terms, the set (2.4) and (2.5) remains unaltered under such amap. Sower* 
that there is a new gauge invariance of Einstein’s equations by means of which one 
rotate the electric and the magnetic parts of the Weyl tensor?. 

We assume this symmetry to be a good one in the general case ( Tpu # 0) and wewill 
modify Einstein’s equation of the gravitational field conveniently. We shall discuss this 
modification elsewhere. Here we shall treat the problem of modification of partide 
behaviour in gravitational fields that becomes necessary as a consequence of the above 
gauge invariance. 
. Before doing this, it seems worthwhile to call the attention of the reader to tbe 

property of invariance of the super-energy momentum tensor of Bel under the above 
duality operation. 

Bel’s tensor (Bel 1962) is a quadratic function of the Weyl tensor written in the 
form: 

2 y B v  = ~ p w c P y +  p a p w  * B y  (2.11) 
P C P  * 

It is trivial to show that this tensor does not change under the map (2.9). SO7 unless 
one breaks this symmetry by introducing some non-invariant terms in the equation for 

fields gap, Zap the fields are not uniquely defined by giving the energy-momenm 
tensor (2.11). 

3. The equation of motion of gravitational poles 

In the absence of sources for the contracted Riemann tensor. the Jacobi equation(?’ 
and the modified equation (1.2) can be written in terms of the electric and mapeac 
tensors gap and Zap defined by (2.2) and (2.3), under the form: 

(3.1) 

(321 

Wrlr 

D ~ $ / D S ~  = g;,f 

D~I-II*/DS~ = fcnp. 
t This has a simple expression in two-spinor formalism (Penrose 1960). n e  spinorid analogue 
tensor is the completely symmetric fourth-rank spinor ~5~~~ ; the duality rotation d ~ s m  * 4nbed 
a real constant leaves Bianchi’s identity in vacuum, namelyVAA’4A,,CD = 0, invariant. Thetensoreqldvalmr 
Of this duality rotation is precisely (2.10) which implies (2.9). 
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ne of the terms E pole and H pole now becomes transparent: they 
mbipo&' denote particles that couple, through two types of tidal forces, with the 
M~ and magnetic parts of the Weyl tensor, respectively. 

neequations of motion for E poles are geodesics and the corresponding equations 
dmtionfor Hpoles are curves of forced motion. The acceleration effect on Hpoles is 
acompletely new phenomenon that has no equivalence in Newtonian theory. So it is a 
gd effect of the curvature of space-time. We will give here some properties of 
&@e trajectories. 

kt ~ " ( s )  be the curve under discussion and consider a real parameter s on it. The 
mtjon for y"(s) will be written as 

a dyFdy" F dZ 
ds pv ds ds 
7 y " ( s )  + ( }-- = (3.3) 

Where P is the forced motion term which induces the deviation of y"(s) from the 
q t i o n  of ageodesic. Then we construct a family of curves that generate a congruence 
f(s, U) in which U distinguishes different curves and s isa parameter on each curve. 
Next we impose equation (3.2) on the connecting vector Tza (that can be defined as the 
derivative of y'(s, U) with respect to the U variable). As a consequence, the force P 
must be a solution of the equation 

(3.4) 

inwhich we have identified the vector S'" of equations (2.2) and (2.3) with the tangent 
vectorto the curve y"(s). 

In order to arrive at this condition on P a lot of work is saved if we note that the 
x m d  absolute derivative of nQ with respect to the s parameter can be written as 

+2[ CY }-- ayAdrIu 
CA as ds (3.5) 

and 

Q?hn (3-4) for P seems, at first sight, to be highly involved. In order to know the 
Of Hpoles, we have to know the force P. To obtain F we must solve equation 

the electric and magnetic parts of the Weyl tensor are obtained by 
??On onto the direction of motion of the H pole. It seems like a 'bootstrap' 
:boo. Fortunately, due to the symmetric properties of H poles we will show that 

an apparent situation-we can deal very directly with this new kind of 
@Obon* Theuitimate reason for this simplification rests on the conformal behaviour of 

(3.4) in . 

mtbmy. 
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So, due to the synmetric properties of the metric connection 
(ii) # is a solution of the wave equation (U# = 0) in the gwen background m e ~ i c  

ms can be easily seen by writing equation (3.4) in terms of the # field and makinguse 
of the trace-free property of the Weyl tensor. 

(Ei) P is a constant of motion for H poles. Indeed, the absolutederivativeofp 
gives 

this implies F, = (plh 

The last equality comes from the fact that gap and ZpS are orthogonal to ayu/&. & 
above property implies that Hpoles travel on curves of constant acceleration. It isdear 
that not all such Curves can be a possible trajectory of H poles, but any curve y"(s)ofB 
poles is a curve of constant acceleration. 

Notice that equation (3.4) does not restrict the class of metric admissible for a 
space-time Riemannian manifold. This can be seen by an inspection of the initial data 
which we have to impose on # and the degrees of freedom of the Weyl tensor. 

4. Conformal relationship between E and Htrajectories 

Consider a a Riemannian manifold V, containing a metric g,,(x) and a set of non-null 
geodesics, characterized by a generic tangent vector ua(s), where s is an afftw 
parameter. Let us then project the Weyl tensor and its dual into the uu direcb", 
according to expressions (2.2) and (2.3) in order to define its electric and magneticPam. 

An arbitrary conformal mapping of V, into V, generated by a function $ be 
&ven by setting 

(4.10) 

(4.1b) 

As a consequence of this mapping, the quantities gaB and Xpp and the propertiesoftbe 
congruence generated by up  change accordingly (see equations 2.7): 

ua + ija = e-*UQ 
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io& we have used the invariance property 
-Py - 

7:;+ Vap-  17:;. (4.3) 

we wot&j like to call attention to the fact that it is not possible to change the 
m b e e  and/or the rotation-free properties of a congruence of geodesics by a 
coprormal transformation. This is not the case for the acceleration vector. The 

$(s) are mapped into accelerated curves Ca(9 of equations of motion given 

bll 
DP/D; = $(e-z’)lpgaB. (4.4) 

the whole class of functions $ let us select the set {IF, = @} such that @ obeys the 

b&ich the tilde over (T on the left-hand side of this expression means that the 
&mt derivative is taken in the conformally transforned metric $y(x ) .  By making 
b&oiceoffunctions, we map the class of geodesics ua(s) into the class of accelerated 

i”(9 defined by equation (3.3). In other words, we map the trajectories of E 
$sinto trajectories of H poles. We remark that the right-hand side of equation (4.5) 
m be evaluated without reference to the curves of H poles. This is a simple direct 
mOSequence of the transformation properties of the Weyl tensor under a conformal 
mapping. This shows the way of circumventing the bootstrap situation we seemed to be 
f a d  with before. 

Wewould like to emphasize here the deep meaning of the conformal transformation 
that is revealed by our theory. Indeed, conformal mapping appears as an operation by 
=of which E poles can be transformed into H poles. 

Another beautiful consequence of the properties of this mapping is the possibility of 
m u g  the equation of motion of H poles from a variational principle. Expression 
b-4) ~uggests the way for doing this by extremizing the action A =je* dc for a 
” ien t  choice of the function @. Indeed, if we set 

6 e@df=O I 
h w e  obtain equation (3.3) for H poles 

(4.6) 

&dosions 

lntbjspaperwe have introduced a new class of particles which we have called H poles. 
“.mtial Property of H poles rests on the fact that the relative acceleration of nearby 

is dominated by tidal forces associated with the dual of the Riemann tensor 
(r6e . .wetic Part of the Weyl tensor in vacuum). This implies that H poles are not 
wymuPkdwith gravitation and so they do not obey the equivalence principle. 

b ~ ~ r e ; t s o n  for introducing such a class of particles comes from the behaviour 
ffbm’seWation in a vacuum, under a rotation of electric and magnetic parts of the 
wqkmr. Meed, as we have shown in 5 2, the invariance of the equations of 
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gravitation under the gauge group (2.9) shows that the role of gas and be interchanged. This strongly suggests that the usual coupling of particles (E 
gravitation through the electric part gap must be enlarged. 

men, we obtain the most beautiful result of the present paper, i.e., thattrajectories 
of E poles are mapped into trajectories of H poles by a suitable choice of themdoa 
function. This also gives a new deep insight on the role of the anformal worn 
tion. 

theories, it seems worthwhile to compare the present theory with the behavioud 
charged particles in the presence of electromagnetic fields. 

A very similar situation occurs in Coulomb’s discussion on charged p&des in 
electric and magnetic fields. Indeed, in Dirac’s version of Coulomb’s ideas @ir;lc 
1948), point particles in electromagnetic fields can be classified as being of two types: e 
poles or h poles. The equations of motion they satisfy are, respectively: 

 though our result does not make any appeal to similar behaviour other 

(5.10) 

in which 8’ and $Yw are the electric and magnetic fields defined by means of tbe 
projection of the antisymmetric tensor FP’ and its dual along the direction of motion. 
So, we can see the deep formal similarity between electrodynamics and gravidpaairs 
Indeed, e poles couple to an electric field and h poles couple to a magnetic field in tbe 
same way that E poles and H poles, in a gravitational field, couple to the electric and 
magnetic parts of the Weyl tensor. 

If h poles and/or H poles exist in our universe, then we should be able to dew 
them-at least in principle. A profound dissimilarity between both kind of poleShn 
appears. The existence of h poles does not introduce any change of prin~P1ab 
Maxwell’s theory-and if we find such a class of particles (as some authors very r”@ 
claim to have done) then the theory of electrodynamics still remains as it is a* the 
present. 

This certainly is not the case for H poles. If these particles reveal theire&tenQm 
the reai world then gravitational theory should be changed substantially. 
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